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P H Y S I C A L  C O N T E N T  OF A G A U G E  M O D E L  

D E S C R I B I N G  M E D I A  W I T H  S T R U C T U R E  AND D E F E C T S  

Yu. V. Gr inyaev  and N. V. Cher tova  UDC 539.3 

The possibility of a unified description of media with structure and media with defects is es- 
tablished on the basis of the relation between the main geometrical concepts and the dynamic 
equations of the conventional theories of elastic media with microstructure and the contin'ual 
theory of defects. An idealized scheme of representing the general deformation in a material 
with defects is proposed. 

I n t r o d u c t i o n .  The development of adequate models for describing the inelastic behavior of materials 
is topical for theoretical predictions of the behavior of materials under various actions. According to modern 
concepts, the inelastic deformation of solids is substantially nonhomogeneous, i.e., a medium being deformed 
is a set of regions with different nature and degree of deformation. A region of homogeneous deformation is 
an individual element of the structure. In this sense, all real solids being deformed are media with structure 
whose scale is determined by various structural peculiarities of the medium, for example, by the distribution 
of stress concentrators. The presence of structure implies the existence of defects in the form of interfaces 
between structural elements. Traditionally, some aspects of inelastic behavior due to the structure and defects 
of materials have been considered separately in the continual theory of defects [1, 2] and the theories of elastic 
media with structure [3, 4]. Until recently, the continual theory of defects did not contain dynamics. This 
approach allowed one to calculate strain and stress fields at a specified density of defects. The gauge field 
theories [5, 6] has made it possible to derive a closed system of dynamic equations for an elastic body with 
defects. Within the framework of the gauge approach, media with structure have not been described in the 
literature, and this makes the present paper topical. 

1. M a t h e m a t i c a l  Fo rma l i sm  in Cons t ruc t ing  the  G a u g e  Theory. Gauge theories were first 
used to describe the deformation of solids with defects in [5, 6], where the mathematical apparatus of gauge 
description is discussed in detail and it is shown that dynamic models of an elastic body with dislocations, 
disclinations, and defects of both types can be developed on the basis of a Lagrangian nonlinear elastic body. 
Below, as a first approximation we consider a linear model of an elastic body with dislocations. The procedure 
of constructing the gauge model is as follows: we write the Lagrangian of the linear theory of elasticity for a 
homogeneous isotropic body in the form 

f pOu~Oui ~ ( 0 ~  Oui Ou, OW~ ~OuiO~j] 
ot 2 o joZ + o%5 o ,J 2ox o j, L =  (1.1) 

(ui are components of the elastic displacement vector, ~ and # are Lamd coefficients, and p is the density 
of the medium) and determine its gauge group. The initial Lagrangian (1.1) is invariant with respect to 
homogeneous translations 

t) = t) + (1.2) 
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and this corresponds to the displacement of an elastic body as whole. The localization of the translation 
group 

~ti(x, t) = ui(x, t) + ai(z, t) (1.3) 

violates the invariance of (1.1) since additional terms appear due to differentiation of the parameters of 
the group ai(x,t).  The procedure of minimum replacement, in which ordinary derivatives are replaced by 
elongated derivatives, 

O(zi -., Djui = Oui O~zi Oui 
Oxj ~ + 15ji, Ot ~ Doui = ~ + Vi, (1.4) 

restores the invariance of (1.1) for the inhomogeneous transformations (1.3): 

A DiuiDjuj] .  (1.5) LI / dV P-P= Dou~Doui --21t (DjuiDjui  + DjuiDiuj)  - -~ 

The replacement (1.4) gives rise to new gauge or compensating fields/Sji and Vi, with additional, according 
to [5], kinetic and potential energy, which determines the Lagrangian of the gauge fields 

L2  = a v  I i j I ~  - -~ 

as a function of the quantities 

Iij = OVj &Sij &3tj (1.7) 
Oxi Ot ' a~j = eiat Ozk ' 

where B and S are new constants of the theory. The procedure of constructing the gauge theory does not 
clarify the physical content of the model. To solve this problem, we analyze the general deformation within 
the framework of the continual theory of defects, since the localization of the translation group (1.3) at the 
point (x, t) is equivalent to introducing a Volterra single dislocation, and the functional dependence on the 
coordinates gives the averaged distribution of defects [2, 7]. 

2. Scheme of  R e p r e s e n t a t i o n  of  Genera l  D e f o r m a t i o n  in the  Con t inua l  T h e o r y  of  Defec ts .  
The general deformation in a material with defects can be written as the sum of the following three terms 
known in the continual theory of defects: 

t o t  = uel  _ e l -p l .D c.pl  (2.1) u(i,j) (i,j) + t~(i,j) + u(id), 

each of which represents the symmetric part of the gradient of the continuous displacement vector. The 
subscripts in parentheses denote symmetrization, and the comma denotes differentiation with respect to the 
coordinate. The first term on the right side of (2.1) corresponds to the elastic deformation produced by 
external loads and it disappears with acoustic wave velocity when the loads are removed. The second term 
describes the compatible elastoplastic deformation due to defects of the material. As adopted in the continual 
dislocation theory [1, 2], the gradient u el-pl'D is the sum of the elastic and plastic distortions 

- -  8 p l 'D  (2.2) e l -p l .D - -  /3e!.D + ~'j i  ' 
Zti,j ~-- 3z 

each of which is not a gradient of the continuous displacement vector. By definition, arbitrarily specified 
plastic distortion flp~.D corresponds to dislocation density aij = - e i k ,  0flt~l'D/0xk, and elastic distortion 
describes distortions of the body that ensure its continuity at the specified dislocation density: 

0 e l -p l .D (9 = + . P '  

Hence, the dislocation density can be written as 

(2.3) O~ij = e i k l  O X k  

Since, separately,/:/el.D and ~p.l.D do not satisfy compatibility conditions, they are called the incompat- I ' j i  3z 
ible elastic distortion and the incompatible plastic distortion, respectively. The last term in (2.1) corresponds 
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to the compatible plastic deformation that  is not related to stresses and it describes irreversible changes in 
the shape of the body, for example, due to annihilation of defects or their emergence on the surface. 

3. M e a n i n g  o f  t h e  Var iab les  o f  t h e  G a u g e  Mode l .  The proposed idealized representation of 
the general deformation (2.1), which is unquestionably expedient for an analysis of the main mechanical 
characteristics of solids, shows that the elastic distortions in a material with defects (1.4) are determined by 
the reversible elastic distortion due to external loads and the incompatible elastic distort ion due to defects of 

~el.D the material: Djui  = ouel /ox j  -b j i  " 

The rate of displacements, which determines the kinetic energy L1, can be represented as the sum of 
the rates of elastic displacements and the displacements due to motion of defects: Doui = Ouel/ot + V/, where 

Vi(x, t) = (O/Ot)uel-pl'D(x, t) + fi(t) [f/(t) is an unknown function of time]. The last expression, illustrating 

the physical content of the potential Vi, should not be substituted into formula (1.4) since it increases the 
number of variables of the model and the order of equations of motion. In addition, the processes due to 
motion of defects are substantially dissipative and determine the viscous properties of materials, which are 
described using the rate as an independent variable. 

For known values of the potentials u el, ~e!.D ~,j~ , and V/, the Lagrangian of the gauge fields L2 is determined 
by the dislocation density tensor (2.3) and the dislocation flux density tensor fij. This  quant i ty  is found as 
the time derivative of the plastic distortion due to defects of the material [7]. By simple transformations with 
allowance for Eq. (2.2), it can be expressed in terms of the incompatible elastic distort ion and the rate V/ 
due to motion of defects: 

p D 0vj D 
I ~ -  O----i--= Oxi Ot 

The condition of stat ionari ty of the action integral 

o o. 
Oxi \O0,i l ] J 

V S 

where 0 takes the values u el /~e!.D , "3z , and V/, leads to the dynamic equations of the model: 

0 [OU i yi ) Oo'ji, 0 ,.,lOCi j OYj 0 (O~ij O~pj 
+ --0x,  

O B(O~Ot j OVj /Ouj 

and the conditions on the surface of the body, which are satisfied for 

(3.1) 

OL 0 0 L  OL 6 0 s = 0 .  
O0 Ox~ O0,i = O, O0,i 

The superscripts of the elastic quantities u el and t3~ "D in expressions (3.1)-(3.3) and in the further text are 
omitted. Zero variations on the boundary (3.2) correspond to specified values of the quantit ies and determine 
first-order boundary  conditions. Equalities (3.3) represent the boundary conditions on the free surface, where 
c~ij is the dislocation density tensor, Iij is the dislocation flux tensor, and crij are effective stresses defined 
by crij ~- (Iz/2)(Ui,j 4- ~ji "4- Uj,i -b ~ij) 4- (A/2)(Ui,i + [3ii)6ij. In solving problem with specified actions on the 
boundary, one should add corresponding surface terms in the expression of the Lagrangian density (1.1). 

Since the Lagrangian of the model is invariant with respect to covariant derivatives, the first of the 
three groups of equations of motions (3.1)-(3.3) is a consequence of the two other. Selecting the relation 
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6ui s = O, &3ij s = O, 6Vi s = 0 (3.2) 

or for 

aij S = 0, aij  S = O, Iij S = 0 (3.3) 

and are a consequence of the equations 



that permits one to eliminate one variable from the two other equations (gauge condition), it is possible to 
find a solution of the closed system of equations for two variables subject to specified initial and boundary 
conditions that distinguish unambiguous solutions. Under the condition Vi -- 0, which implies that the flow 
of defects does not cause motion of the material continuum, the dynamic equations 

02ui 0 ji 
P O t  2 OXj -~ O, B Or----- ~ - Oxp ~, Oxp Ox i ~ ) - O'ij = 0 (3.4) 

with the corresponding initial and boundary conditions represent a dynamic model of an elastic body with 
internal stresses. The system obtained can be used to analyze the elastoplastic material behavior, which 
generally implies the existence of three deformation components (2.1) provided that the compatible plastic 
deformation is insignificant. These conditions are realized in shock-wave loading processes, in which most 
defects do not emerge on the surface and give rise to compatible plastic deformation. 

4. Rela t ionsh ip  of  the  G a u g e  Theo ry  w i t h  the  Theories  of  Micromechanics .  To justify the 
applicability of the rigorous mathematical formalism of the gauge theories to the deformation of media with 
structure, we consider the relationship of the gauge theories with the theories of micromechanics [3, 4]. In the 
theories of nficromechanics, each point represents a volume that is not absolutely rigid and undergoes some 
deformation. The radius vector of an arbitrary point in a medium with structure is the sum of the two vectors 
R(r, r ', t) = R(r, t) + Rr(r, r I, t), where R(r, t) determines the location of the center of mass of a structural 
element and R'(r ,  r', t) is the position of the selecting point relative to a coordinate system attached to the 
center of mass of the structural element. Using macrolevel coordinates, the vector R(r ,  r', t) can be averaged 
over the volume of the structural element, which gives R(r, l, t) = R(r ,  t) + R' (r ,  l, t) or, going over to the 
displacement vector, u(r,  l, t) = u(r ,  t) + u~(r, l, t), where l is the linear dimension of the structural element. 
This expression implies that the displacement of a macropoint in a medium with structure is the average 
displacement of points of the structural element, determined by the displacement of the center of mass of the 
structural element and the mean projection of the relative displacements of points of the structural element 
onto the macrocoordinates. The vector u'(r, l, t) is a peculiar response of the mesolevel to the macrolevel that 
shows how the displacement of the macropoint changes upon deformation of the corresponding volume. In 
the gauge theories, this expression corresponds to localization of the translation group (1.3) and determines a 
defect of the translation type. From the previous reasoning it follows that the localization of the translation 
group is due to manifestation of the internal structure of the macropoint and is a point that unifies the 
continual theory of defects and the theory of elastic media with structure. 

In the theories of micromechanics, the deformation geometry is developed on the basis of the assump- 
tion of the affine deformation of the structural u~(r ,r ' , t )  = r~k~oki(r, t), which implies that the gradient of 
relative displacements (microdistortion) is homogeneous in a structural element and is nonhomogeneous in 
the macrovolume. An integral of ~o(r, t) over the macrocontour, whose points are structural elements, is not 
equal to zero point and determines the jump of displacements, which is associated with the Burgers vector 
in the theory of defects. This also indicates the common nature of the deformation of media with structure 
and media with defects. 

The dynamic equations in the theories of micromechanics are determined on the basis of two ap- 
proaches: by postulating the Lagrangian of a medium with structure [3] or local conservation laws [4]. These 
approaches use appropriate boundary conditions. The dynamic equations of Mindlin's theory, developed on 
the basis of the Lagrangian of a medium with structure [3], coincide with accuracy up to coefficients with the 
equations of motion in the gauge model (3.4). The coincidence of the dynamic equations again demonstrates 
the possibility of describing media with structure within the framework of the gauge theory and allows one 
to relate the unknown constants of the gauge model B and S to the inertial properties of structural elements 
and the double stress moduli of Mindlin's theory [8]. Thus, the relationship between the quantities included 
in the dynamic equation of the theories and boundary conditions is established. 

Conclusion.  By rigorous generalization of the classical theory of elasticity within the framework of 
the gauge formalism (1.1)-(1.7), it is possible to develop a dynamic theory of deformation for solids that is 
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a consistent extension of the continual theory of defects and a version of the theory of elastic media with 
structure. From the viewpoint of thermodynamics, the applicability of the gauge approach to the deformation 
of media with structure can be substantiated as follows. The initial Lagrangian of the classical theory of 
elasticity (1.1) describes irreversible equilibrium deformation processes in the elastic region. Deformation 
beyond the elastic limit is an irreversible nonequilibrium process, and, hence, the variational formulation of 
the problem on the basis of the Lagrangian (1.1) becomes invalid. Deformation beyond the elastic limit can be 
described on the basis of the local equilibrium principle, whose essence is that any nonequilibrium state of a 
body can be regarded as a set of equilibrium states of small volumes making up the body. In other words, the 
material acquires structure whose elements are small volumes in the state of internal mechanical equilibrium. 
Since the only equilibrium process in the mechanics of a deformable solid is elastic deformation, the small 
volumes, undergoing elastic deformation, can be displaced, without a change in the internal equilibrium 
state, as a unit by a certain vector a(x, t), whose coordinate dependence distinguishes the volume element 
considered. Thus, from the viewpoint of thermodynamics, transition from the global gauge transformations 
(1.2) to the local transformation (1.3) implies the existence of regions of local mechanical equilibrium, which 
can be considered as separate elements of the structure. 
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